Lecture 8

Dr. Mahmoud Khedr

Third Edition

CHAPTER MECHANICS OF MATERIALS

Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

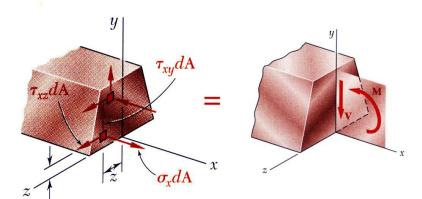
Lecture Notes: J. Walt Oler Texas Tech University

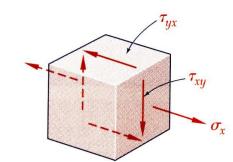
Shearing Stresses in Beams

Mc Graw Hill

© 2002 The McGraw-Hill Companies, Inc. All rights reserved

Introduction





- Transverse loading applied to a beam results in normal and shearing stresses in transverse sections.
- Distribution of normal and shearing stresses satisfies

$$F_{x} = \int \sigma_{x} dA = 0 \qquad M_{x} = \int (y \tau_{xz} - z \tau_{xy}) dA = 0$$

$$F_{y} = \int \tau_{xy} dA = -V \qquad M_{y} = \int z \sigma_{x} dA = 0$$

$$F_{z} = \int \tau_{xz} dA = 0 \qquad M_{z} = \int (-y \sigma_{x}) = 0$$

- When shearing stresses are exerted on the vertical faces of an element, equal stresses must be exerted on the horizontal faces
- Longitudinal shearing stresses must exist in any member subjected to transverse loading.

MECHANICS OF MATERIALS Objectives

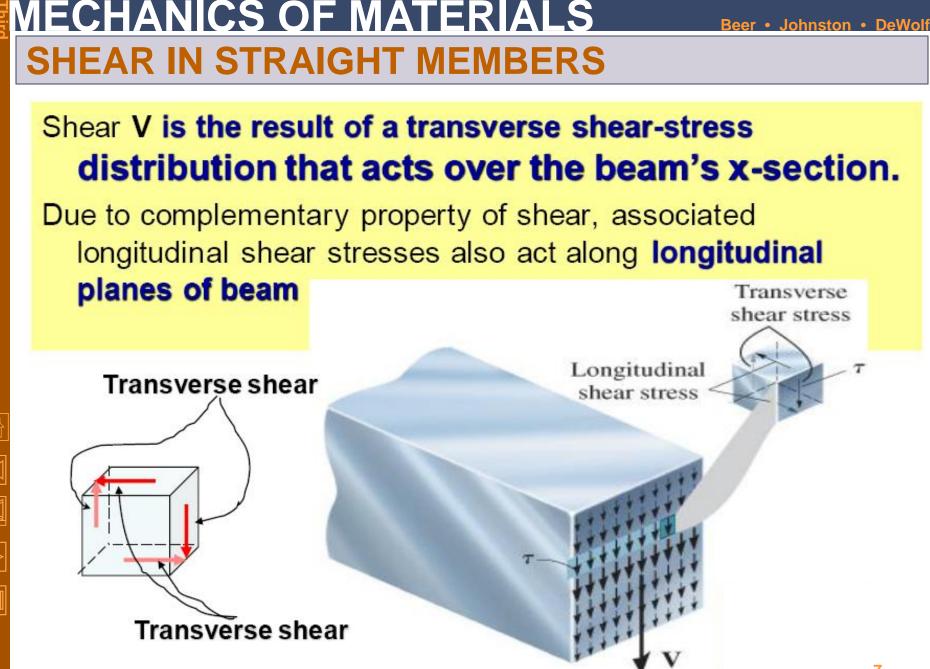
- To develop a method for finding the shear stress in a beam made from homogeneous material that behaves in a linear-elastic manner
- This method of analysis is limited to special cases of x-sectional geometry
- Discuss the concept of shear flow, with shear stress for beams and thinwalled members
 - Discuss the shear center

Outline

- 1. To study Shear Stresses in Straight Members
- 2. To understand how to apply the Shear Formula
- 3. To determine and draw the Shear Stresses in Beams' x-sec
- 4. Shear Flow in Built-up Members
- 5. Shear Flow in Thin-Walled Members
- 6. *Shear Center

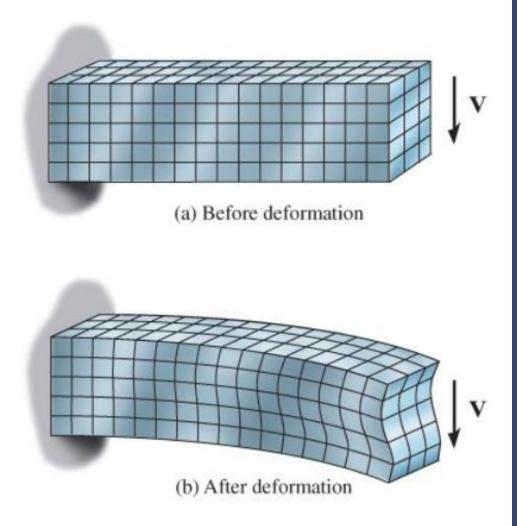
MECHANICS OF MATERIALS SHEAR IN STRAIGHT MEMBERS

- As shown below, if top and bottom surfaces of each board are <u>smooth and not bonded</u> together, then application of load P will cause the boards to <u>slide relative to one another</u>.
- However, <u>if boards are bonded together</u>, longitudinal shear stresses will develop and distort x-section in a complex manner

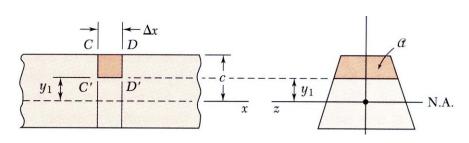


MECHANICS OF MATERIALS SHEAR IN STRAIGHT MEMBERS

 As shown, when shear V is applied, the non-uniform shear-strain distribution over xsection will cause it to *warp*, i.e., *not* remain in plane.



Shear on the Horizontal Face of a Beam Element



• Shear flow,

$$q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} = shear \ flow$$

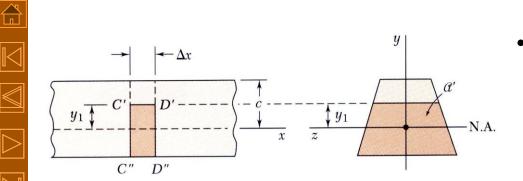
• where

$$Q = \int_{A} y \, dA$$

= first moment of area above y_1

$$I = \int_{A+A'} y^2 dA$$

= second moment of full cross section



Same result found for lower area

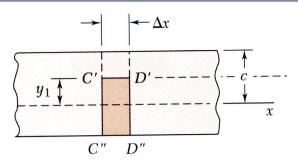
$$q' = \frac{\Delta H'}{\Delta x} = \frac{VQ'}{I} = -q'$$

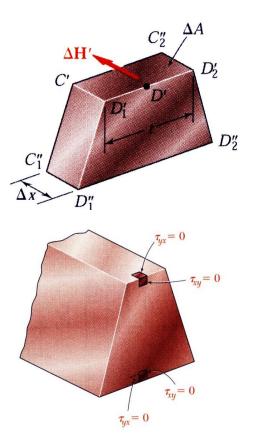
$$Q + Q' = 0$$
= first moment with respect

to neutral axis

$$\Delta H' = -\Delta H$$

Determination of the Shearing Stress in a Beam





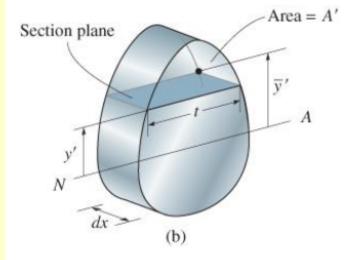
• The *average* shearing stress on the horizontal face of the element is obtained by dividing the shearing force on the element by the area of the face.

$$\tau_{ave} = \frac{\Delta H}{\Delta A} = \frac{q \,\Delta x}{\Delta A} = \frac{VQ}{I} \frac{\Delta x}{t \,\Delta x}$$
$$= \frac{VQ}{It}$$

- On the upper and lower surfaces of the beam, $\tau_{yx} = 0$. It follows that $\tau_{xy} = 0$ on the upper and lower edges of the transverse sections.
- If the width of the beam is comparable or large relative to its depth, the shearing stresses at D_1 and D_2 are significantly higher than at D.

MECHANICS OF MATERIALS Shear Formula

- By first principles, flexure formula and V = dM/dx, we obtain
 VQ
 Equation 7-3
- r = Shear stress in member at
 the pt located a distance y'
 from the neutral axis.
 Assumed to be constant and
 therefore averaged across
 the width t of member



V = **Internal resultant shear force**, determined from method of sections and equations of equilibrium

Johnston • DeWolf

Shear Formula

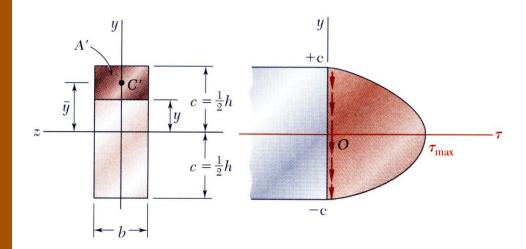
• By first principles, flexure formula and V = dM/dx, we get:

- *I* = moment of inertia of entire x-sectional section plane area computed about the neutral axis
- t = width of the member's x-sectional area, measured at the pt where τ is to be determined
- Q = 1st moment of area where A' is the top (or bottom) portion of x-sectional area, defined from section where t is measured, and y' is distance of Centroid of A', measured from neutral axis

Area = A'

Shearing Stresses τ_{xy} in Common Types of Beams

y



E

• For a narrow rectangular beam,

$$\tau_{xy} = \frac{VQ}{Ib} = \frac{3}{2} \frac{V}{A} \left(1 - \frac{y^2}{c^2} \right)$$
$$\tau_{\max} = \frac{3}{2} \frac{V}{A}$$

• For American Standard (S-beam) and wide-flange (W-beam) beams

$$\tau_{ave} = \frac{VQ}{It}$$
$$\tau_{max} = \frac{V}{A_{web}}$$

 $au_{\rm ave}$

D

D'

A

E

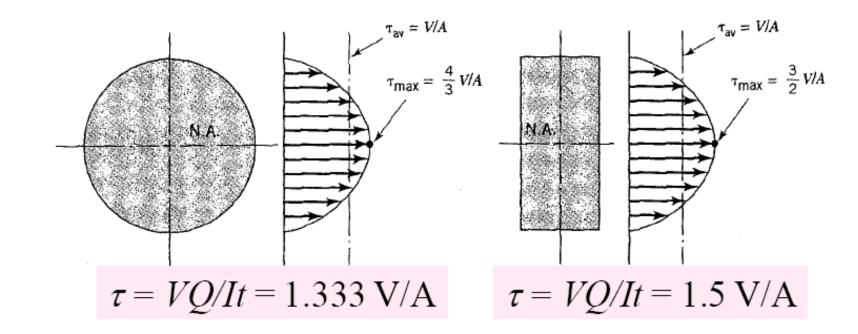
E'

G'

B'

Shearing Stresses τ_{xy} in Common Types of Beams

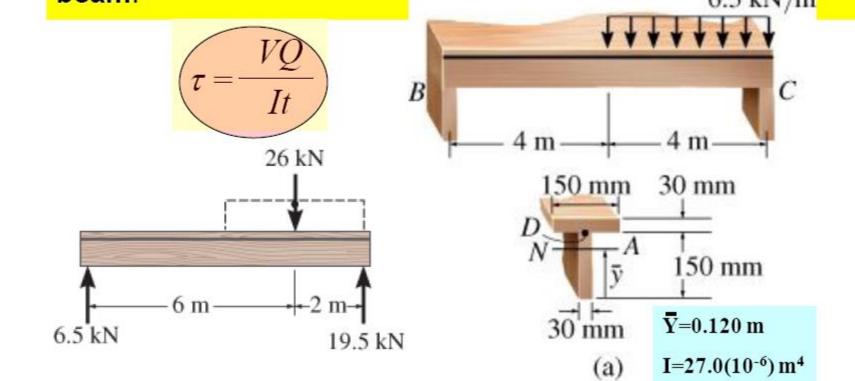
For circular and rectangular cross sections, transverse shear can be estimated in terms of average shear stress



Example

Mc

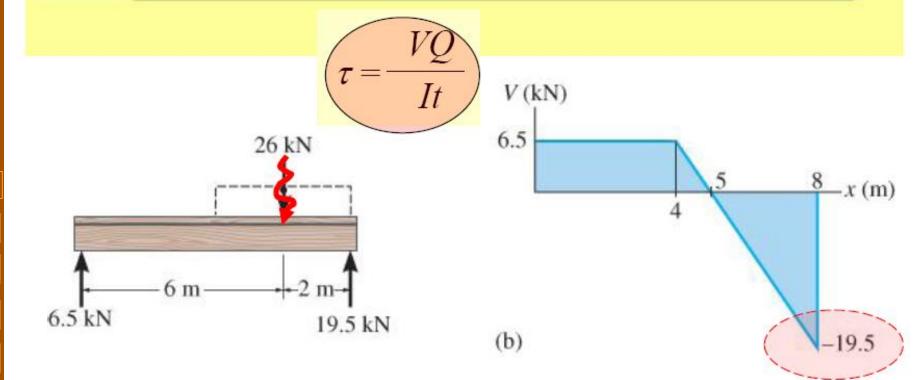
Beam shown is made from two boards. **Determine the maximum shear stress** in the glue necessary to hold the boards together along the seams where they are joined. **Supports at** *B* and *C* exert only vertical reactions on the beam. 6.5 kN/m



Example

Internal shear (V⇒⇒SFD)

Find: the reactions at B&C, and SFD for the beam. Find: Max. absolute shear in the beam is 19.5 kN.

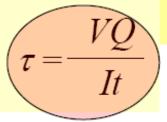


Example

Section properties **Y**&I

The centroid and therefore the neutral axis will be determined from the reference axis placed at bottom of the x-sectional area. Working in units of meters, we have

$$\overline{y} = \frac{\Sigma \overline{y}A}{\Sigma A} = \dots = 0.120 \text{ m}$$



Thus, the moment of inertia, computed about the neutral axis is,

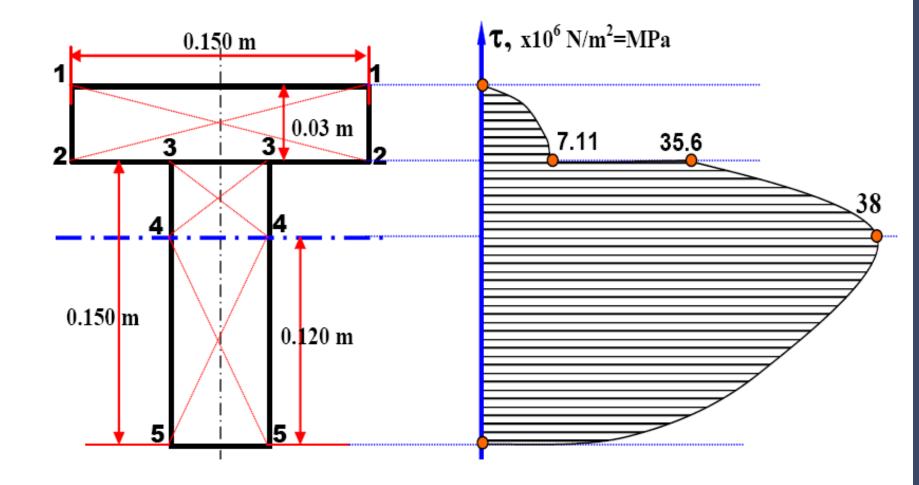
$$I = \dots = 27.0(10^{-6}) \,\mathrm{m}^4$$

Example

Mc Graw Hill

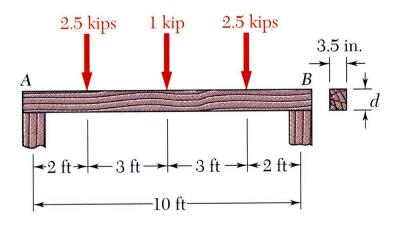
$V = 19.5 \times 10^3 N$,	$I = 27 \times 10^{-6} m^4$,		$V/I = 5.27 \text{ x} 10^9 \text{N/m}^4$		
x-section	Level	V/I,	Q =	t, m	τ=
1 0.150 m		N/m ⁴ x 10 ⁹	A (y), m ³		(V/I)(Q/t), N/m ²
2 3 3 0.03 m 2	1-1	5.27	0	0.15	0
4 4	2-2	5.27	(.03x.15) x (.015+.03)=2.03x10 ⁻⁴	0.15	7.11x10 ⁶
0.150 m 0.120 m	3-3	5.27	(.03x.15) x (.015+0.03)=2.03x10 ⁻⁴	0.03	35.6x10 ⁶
5 0.03 ⁱ m	4-4	5.27	$(.03x.15) \times (.015+.03)$ + $(.03x.03) \times (.00000000000000000000000000000000000$	0.03	38x10 ⁶
0.150 m τ, x10 ⁶ N/m ² = MPa			2.2x10 ⁻⁴		
2 3 3 0.03 m 2 7.11 35.6	4-4	5.27	(.12x.03)(.06)	0.03	38x10 ⁶
	5-5	5.27	0		0
0.150 m 0.120 m	1		*		• • • • •

Shear stress distribution over the cross section



Mc Graw Hill

Sample Problem 2



A timber beam is to support the three concentrated loads shown. Knowing that for the grade of timber used,

$$\sigma_{all} = 1800 \,\mathrm{psi}$$
 $\tau_{all} = 120 \,\mathrm{psi}$

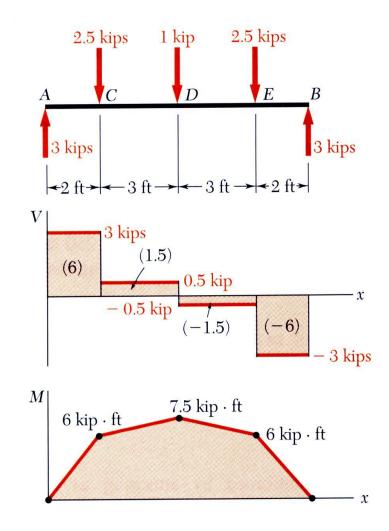
determine the minimum required depth d of the beam.

SOLUTION:

- Develop shear and bending moment diagrams. Identify the maximums.
- Determine the beam depth based on allowable normal stress.
- Determine the beam depth based on allowable shear stress.
- Required beam depth is equal to the larger of the two depths found.

<u>MECHANICS OF MATERIALS</u>

Sample Problem 6.2

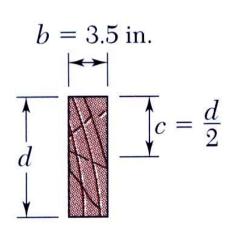


SOLUTION:

Develop shear and bending moment diagrams. Identify the maximums.

 $V_{\text{max}} = 3$ kips $M_{\text{max}} = 7.5$ kip \cdot ft = 90 kip \cdot in

Sample Problem 6.2



$$I = \frac{1}{12}bd^{3}$$

$$S = \frac{I}{c} = \frac{1}{6}bd^{2}$$

$$= \frac{1}{6}(3.5 \text{ in.})d^{2}$$

$$= (0.5833 \text{ in.})d^{2}$$

• Determine the beam depth based on allowable normal stress.

$$\sigma_{all} = \frac{M_{\text{max}}}{S}$$

$$1800 \text{ psi} = \frac{90 \times 10^3 \text{ lb} \cdot \text{in.}}{(0.5833 \text{ in.})d^2}$$

$$d = 9.26 \text{ in.}$$

• Determine the beam depth based on allowable shear stress.

$$\tau_{all} = \frac{3}{2} \frac{V_{\text{max}}}{A}$$

120 psi = $\frac{3}{2} \frac{3000 \text{ lb}}{(3.5 \text{ in.})d}$
 $d = 10.71 \text{ in.}$

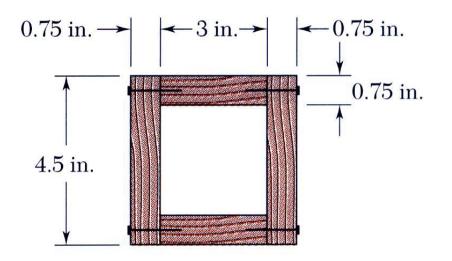
• Required beam depth is equal to the larger of the two. d = 10.71 in.

Beer • Johnston • DeWolf

Beer • Johnston • DeWolf

MECHANICS OF MATERIALS

Example 3



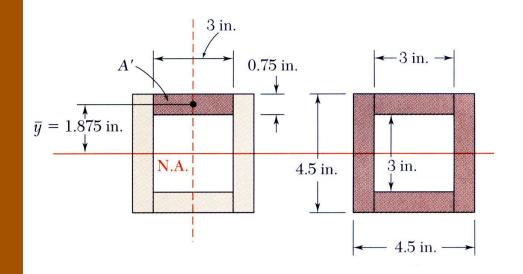
SOLUTION:

- Determine the shear force per unit length along each edge of the upper plank.
- Based on the spacing between nails, determine the shear force in each nail.

A square box beam is constructed from four planks as shown. Knowing that the spacing between nails is 1.5 in. and the beam is subjected to a vertical shear of magnitude V = 600 lb, determine the shearing force in each nail.

<u>MECHANICS OF MATERIALS</u>

Example 6.04



For the upper plank, Q = A'y = (0.75 in.)(3 in.)(1.875 in.) $= 4.22 \text{ in}^3$

For the overall beam cross-section,

$$I = \frac{1}{12} (4.5 \text{ in})^3 - \frac{1}{12} (3 \text{ in})^3$$
$$= 27.42 \text{ in}^4$$

SOLUTION:

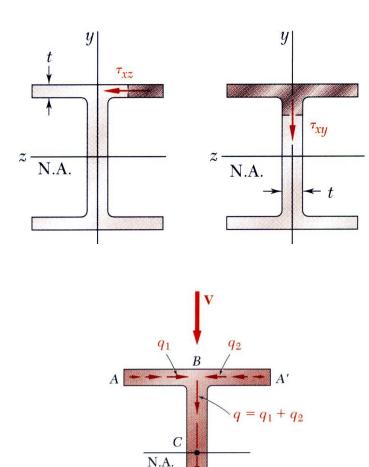
• Determine the shear force per unit length along each edge of the upper plank.

$$q = \frac{VQ}{I} = \frac{(600 \text{ lb})(4.22 \text{ in}^3)}{27.42 \text{ in}^4} = 92.3 \frac{\text{lb}}{\text{in}}$$
$$f = \frac{q}{2} = 46.15 \frac{\text{lb}}{\text{in}}$$
$$= \text{edge force per unit length}$$

• Based on the spacing between nails, determine the shear force in each nail.

$$F = f \ \ell = \left(46.15 \frac{\text{lb}}{\text{in}}\right) (1.75 \text{ in})$$
$$F = 80.8 \text{lb}$$

Shearing Stresses in Thin-Walled Members

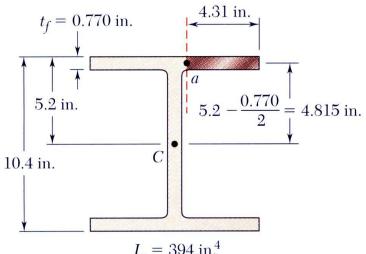


- For a wide-flange beam, the shear flow increases symmetrically from zero at *A* and *A*', reaches a maximum at *C* and the decreases to zero at *E* and *E*'.
- The continuity of the variation in *q* and the merging of *q* from section branches suggests an analogy to fluid flow.

ANICS OF MA S

Beer • Johnston • DeWolf

Sample Problem 3



$I_{\rm r} = 394 \text{ in.}^4$

Knowing that the vertical shear is 50 kips in a W10x68 rolled-steel beam, determine the horizontal shearing stress in the top flange at the point *a*.

SOLUTION:

• For the shaded area,

Q = (4.31 in)(0.770 in)(4.815 in)=15.98in³

• The shear stress at *a*, $\tau = \frac{VQ}{It} = \frac{(50 \text{ kips})(15.98 \text{ in}^3)}{(394 \text{ in}^4)(0.770 \text{ in})}$ $\tau = 2.63 \, \mathrm{ksi}$